長期屋外曝露試験結果と計測システムについて

宮崎大学工学部教育研究支援技術センター 三宅琢磨

はじめに

近年,外被材にポリマー材料を用いたポリマーがいしの使用が欧米を中心に世界的に広がっている.特に シリコーンゴム(SiR:Silicone rubber)やエチレンビニルアセテート(EVA:Ethylene vinyl acetate)などを用 いたポリマーがいしは,従来使用されている磁器がいしと比べて軽量・高強度などの特性を有している.な かでもシリコーンゴムは,耐汚損特性・撥水性に優れていることにより湿潤状態でも水膜を形成しにくく, 高い絶縁性能を有することが分かっており,日本でも電力系統への適用が検討されている.しかしポリマー 材料は有機物である為,各種放電などの課電ストレスやダスト・紫外線のような環境ストレスなどの影響に より経年劣化することが危惧されている.長期信頼性を明らかにするためには実環境で長期間曝露試験を行 うことが最適であるが,多大な時間と費用が必要である.ここでは,曝露試験と人工加速劣化試験を実施し 両者の関係から寿命を明らかにすることを目的としている.今回は各種試験で用いた計測システムの概略と 計測した結果について述べる.

キーワード:がいし ポリマー 微分法

1. 目的

これまでに局部(ドライバンド)アーク放電の発 生に伴う侵食(重量損失)量は、漏れ電流の累積電 気量と相関を示すことが報告されている.しかし、 その電気量の算出方法は、湿潤した材料表面水膜中 を流れる導電性電流とドライバンドアーク放電電流 を区別せずに評価されたものである.そこでドライ バンドアーク放電の特徴である電流波形の急激な歪 みを利用した波形分離法(微分法)によりドライバ ンドアーク放電の電気量をリアルタイムで評価する 計測システムを構築し、長期信頼性を評価してきた. しかし、放電の発生と、設置状況との関係は明確に わかっていない.そこで、がいしの設置されている 気象条件やがいしの汚損状況などと放電の発生の関 係を調査することで、より詳細にポリマーがいしの 長期信頼性を評価することを目的としている.

図1 ポリマーがいしと磁器がいし

2. がいし

がいしとは導体を絶縁し、導体を支持物に固定す るためのものである.従来がいしの材料は大半が磁 器であったが、それに比べて様々な特長を有するポ リマーがいしの国内の電力系統への適用が検討され てきている.図1にポリマーがいし(左)と磁器が いし(右)を示す.

3. 計測システム

3.1 波形分離法

部分(コロナ)放電電流の漏れ電流からの分離は周波数分離により、また局部(ドライバンド)アーク放電の開始は後述の微分法により行い、以下の定義から判定する.

- (1) 2.5kHz 以上の電流成分をコロナ放電電流と してハイパスフィルタで分離し、その放電電気 量を求める.
- (2) ドライバンドアーク放電の発生時には、コロ ナ放電はほとんど発生しないので、ここでは電 流値が大きく、パルス幅の大きな急峻に立ち上 がる電流をドライバンドアーク放電の電流と定 義する.ドライバンドアーク放電の電流はドラ イバンドアークが開始したと思われる電流急変 時から電流が零となり極性が反転するまでとす る.
- (3) 全漏れ電流からコロナ放電電流とドライバン ドアーク放電電流を除いた全ての電流を導電性 電流と定義する.

3.2 微分法

微分法¹⁾とはドライバンドアーク放電の特徴で ある急激な電流変化を利用したもので,その変化 率があるしきい値を超えたものをドライバンドア ーク放電と判定する.なお,ドライバンドアーク 放電電流は図2の斜線部に示すように,電流の微 分値がしきい値を超えた点から電流ゼロクロス点 までとする.

図3に、実際に計測した漏れ電流波形を示す. この図は、導電性電流にコロナ放電電流とドライ バンドアーク放電電流が混在して観測される場合 の例で、同図は全漏れ電流、図4、図5は分離し た波形でそれぞれコロナ放電電流、導電性電流と ドライバンドアーク放電電流が混在したものであ る.図6に漏れ電流(破線)と時間微分値(実線) およびドライバンドアーク放電を識別するしきい 値(Threshold)を示す.

3.3 漏れ電流分離と解析の流れ

図7にこれらの判定プログラムのフローチャー トを示す。まず、漏れ電流のデータを読み込み後、 全電気量 Q-t を計算する。次に 2.5kHz 以上の部分 (コロナ)放電電流成分をハイパスフィルタによ って分離し、そのコロナ放電電気量 Q-p を計算す る。また、全電気量からコロナ放電電気量を引き、 低周波成分の電気量 Q-1 = Q-t – Q-p を求める。次 に各半周期の電流を微分法により局部(ドライバ ンド)アーク放電かどうか判定する。ドライバン ドアーク放電を含む場合、ドライバンドアーク放 電電気量 Q-d と導電性電気量 Q-c = Q-1 – Q-d を求 める。ドライバンドアーク放電を含まない場合は Q-d = 0 となり,導電性電気量 Q-c を求める。最 後に各成分の累積電気量 Σ を計算する。以降この くり返しである。

図7 漏れ電流の分離と解析のフローチャート

4 実験方法

曝露試験は佐賀県唐津市にある九州電力唐津火力 発電所構内の曝露試験用櫓にて実施した. 試料は全 て22kV用のZnO素子内蔵避雷機能付EVA通りがい し、EVA 引き留めがいし、SiR がいし、磁器がいし に 13.3kV を印加して実験を行った. そのときの漏れ 電流波形を 2 枚の A/D 変換ボードを用いて計測し た. 一方は 20Msamplings/sec で計測を行い、周波数 分離を用いて部分(コロナ)放電に対応する 2.5kHz 以上の高周波成分を求めた. もう一方は 2.4ksamplings/sec で漏れ電流を計測し、微分法を用 いて局部(ドライバンド)アーク放電電気量を評価 した. なお, 20Msamplings/sec の測定は EVA 通りが いしと SiR がいしのみに適用した.表1に 22kV 級 配電用の各がいし詳細,図8に曝露試験用櫓の外観, 図 9 に課電回路をそれぞれ示す. ここで表 1 中の EVA-1はZnO素子内蔵避雷器機能付通りがいしを, EVA-2 は引き留めがいしを示している.

Sample	Creeping distance	Electric field (Average)	Material
EVA-1	840 mm	15.8 V/mm	EVA
EVA-2	1014 mm	13.1 V/mm	EVA
SiR	950 mm	14.0 V/mm	SIR
Porcelain	860 mm	15.5 V/mm	Porcelain

表1 試驗条件

図8 曝露試験用櫓外観

図9 課電回路

5 実験結果

図 10 に 2004 年 10 月から 2007 年 2 月までの累積 局部(ドライバンド)アーク放電電気量と降水量を 示す.気象データ(降水量)は唐津情報都市推進協 議会²⁾が唐津市役所屋上に設置している小型地域気 象観測システムにて測定されたものを用いている. 約 2 年程度の計測期間で, EVA 通りがいしは 225C, EVA 引き留めがいしは 27C, SiR がいしは 6.2C, 磁 器がいしは 514C のドライバンドアーク放電電気量 を得た.

2005 年 9 月の台風襲来以降 EVA 通りがいしと磁 器がいしのドライバンドアーク放電電気量が急激に 増加しているが,経年劣化による可能性は少ないと 考えられる.これは,無機物であり劣化することの ない磁器がいしも同時に増加していることから推測 される.ここでのドライバンドアーク放電電気量の 増加の要因は汚損物の堆積であると考えられる.図 11 に新品,図 12 に 5 年半曝露したポリマーがいし の外観を示す.

図 10 2004 年 10 月から 2006 年 10 月までの曝露試験結果

図 11 EVA ポリマーがいし (新品)

図 12 EVA ポリマーがいし(経年品)

図 11 と図 12 を比較すると,5 年半屋外で曝露し たポリマーがいしの表面には撥水性がほとんど残っ ていないことがわかる.これに対して,磁器がいし はもともと撥水性を有しない.このように汚損物の 堆積によってポリマーがいし表面の撥水性が低下し, 導電性電流が流れやすくなる事によって,局部(ド ライバンド)アーク放電の発生も起こりやすくなっ たと考えられる.しかし, EVA 引き留めがいしと SiR がいしではZnO素子内蔵避雷機能付EVA 通りが いしに比べほとんど発生していない.この原因とし ては,EVA 引き留めがいしの場合ではZnO素子内蔵 避雷機能付EVA 通りがいしとの沿面距離や設置方 向の違い(EVA 引き留めがいしのみが海面に対して 平行に設置されていること)が考えられる.また, SiR がいしについては,沿面距離の違いや曝露期間 の違い,外皮材に用いられているEVAとSiRのポリ マー材料が異なる事による特性の違いなどで放電の 発生がなかったものと考えられる.

6 まとめ

今回, 微分法を用いた計測システムを適用して屋 外曝露試験におけるポリマーがいしおよび磁器がい しの漏れ電流を調査した.曝露開始から4年間程度 はほとんど漏れ電流や局部(ドライバンド)アーク 放電の発生は見られなかったが,EVAの通りがいし と磁器がいしにおいては2005年9月の台風襲来を境 に漏れ電流とドライバンドアーク放電の発生が顕著 になった.設置したがいしの表面状態を観察したと ころ,ポリマーがいしにおいても表面の撥水性がほ とんど消失していることがわかった.このことから, がいしの表面状態と設置地域の気象条件,課電状況 によって EVA 通りがいしにおいても撥水性が低下 し放電が発生することを確認した.

参考文献

- 大坪他,「塩霧試験における漏れ電流の自動分 離・解析法の提案」,電気学会誌, Vol.122-A, pp123-124 (2002)
- 唐津情報都市推進評議会 http://web.people-i.ne.jp/~kkj/